
ABCTracker: an easy-to-use, cloud-based application
for tracking multiple objects

Lance Rice1, Samuel Tate1, David Farynyk1, Joshua Sun1, Greg Chism2,
Daniel Charbonneau2, Thomas Fasciano1, Anna Dornhaus2, and Min C. Shin1

1 University of North Carolina at Charlotte 2 The University of Arizona

Abstract

Visual multi-object tracking has the potential to acceler-
ate many forms of quantitative analyses, especially in re-
search communities investigating the motion, behavior, or
social interactions within groups of animals. Despite its
potential for increasing analysis throughput, complications
related to accessibility, adaptability, accuracy, or scalable
application arise with existing tracking systems. Several it-
erations of prototyping and testing have led us to a multi-
object tracking system – ABCTracker – that is: accessible
in both system as well as technical knowledge requirements,
easily adaptable to new videos, and capable of producing
accurate tracking data through a mixture of automatic and
semi-automatic tracking features.
http://ABCTracker.org/

1. Introduction

Automated visual tracking systems provide an indispens-
able tool for gathering reproducible data on groups of ani-
mals. Relative to manual analysis and the effort it entails,
tracking systems enable researchers to collect quantitative
data in ways not previously considered and at more signif-
icant scale. To fully recognize the usefulness of tracking
systems, it is essential to realize that these systems are al-
most always a means to an end, rarely the end itself. Dell
et al. (3) describes the typical procedure for image-based
hypothesis testing as three interdependent steps: imaging,
tracking, and analysis. From this perspective, it is apparent
that the goal of tracking systems is to enable an effective
and efficient transition from video recordings to analysis.
Obtaining such a goal in a generalized manner has many
challenging facets related to system design and the tracking
algorithm.

When individuals seek to gather trajectory data using a
tracking system, the first complication they can encounter
relates to accessibility. Prominent elements of accessibility
include availability, system requirements (e.g., GPU, RAM,

CPU), technical knowledge requirements (e.g., experience
applying image processing techniques), as well as the over-
all usability of the application interface. Still, a highly ac-
cessible system can fall short of the individuals’ needs. For
example, a lack of necessary system features (e.g., sufficient
tools for correcting tracking errors) can limit a system’s ap-
plicability. Furthermore, scaling issues can become a prob-
lem when attempting to process many video sequences or
recordings over long periods.

Although closely related, additional challenges exist re-
garding the design of the tracking algorithm. Typical diffi-
culties faced by tracking algorithms include similar appear-
ances between different objects, crowded scenes, and pro-
longed occlusions among a sometimes unknown and fluctu-
ating number of objects. Systems seeking to generalize to
a range of target types must account for difficult to predict
motion patterns as well as abrupt pose variations. Addition-
ally, complex backgrounds, possibly containing clutter, can
result in similarities in color, texture, and shape to the ob-
jects of interest. As pointed out in (12), lighting also plays
a crucial role in the tracker’s ability to perform.

2. System Overview

The current version of ABCTracker represents several it-
erations of prototyping and testing in collaboration with bi-
ologists researching social insects. This process has yielded
a multiple object tracking system that is highly accessi-
ble and can adapt to new videos with virtually no tech-
nical knowledge requirements on the user. The system
guides individuals through a three-step procedure (Mark-
Track-Correct) towards gathering tracking data (figure-1).
First, the user marks the targets in a small number of video
frames (section-4). These annotations provide all the infor-
mation needed to tune tracking parameter values automat-
ically. The second phase, tracking, determines the appro-
priate parameter values for tracking and applies a sequence
of subroutines to construct trajectory data (algorithm out-
line shown in figure-3). Finally, the system presents the
results to the user in the correction phase (section-6). The
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Minimal system 
requirements due to 
computation being 
performed on server.

Tracking algorithm 
design avoids errors
that require greater
correction effort. 

Long video sequences 
are automatically 
chunked, tracked 
individually, and 
assembled by the
system.

Object marks gathered 
in step #1 are used to 
tune all tracking and
correction parameters. 

Object marks are 
specified with three
mouse clicks.

Manual correction
mode contains 
visualization and 
correction tools to
identify and address 
tracking errors. 

Guided correction
mode identifies potential 
errors and directs the 
user through fixing them.

 Mark#1 Track#2 Correct#3

Figure 1. ABCTracker is a multi-object tracking system that operates in three phases – Marking, Tracking, and Correction. In the first
phase, the user marks objects in a few of the video frames using a simple three-click procedure (head, middle, tail/foot - or vise versa). The
marks created in this initial phase provide everything needed to tune all parameters used during the tracking and correction phases. After
the marking phase, automated tracking begins its execution on the remote server, thus allowing individuals to mark, track, and correct other
recordings in the meantime. Long video sequences are automatically chunked, tracked individually, and assembled by the system. This
enables the system to process the video chunks in parallel. In the last phase, the user is provided with several tools needed to address any
errors in the tracking results.

correction phase includes two modes of correction: a man-
ual mode that offers a complete kit of correction operations,
and a guided mode which aims at providing an intuitive and
effective means of addressing common tracking errors.

ABCTracker uses a client/server architecture to reduce
users’ machine system requirements, facilitate batch pro-
cessing of videos, and promote flexibility in terms of fu-
ture development. Additionally, ABCTracker uses a modu-
lar tracking architecture that allows for substituting subrou-
tines individually or replacing the entire tracking pipeline.
Using a modular architecture allows the system to adapt as
developments continue within the tracking research com-
munity. In this paper, we describe the default tracking
pipeline, which was developed as a general-purpose multi-
object tracking algorithm for static camera recordings. So
far, the default tracking pipeline has been successfully ap-
plied to more than 350 videos of both marked (e.g., painted
color markers) as well as unmarked objects (examples pro-
vided in figure-6). Section-7 provides tracking performance
examples on various types of recordings. In addition, we
demonstrate the effectiveness of our two modes of correc-
tion – guided mode, and manual mode – to visualize and
address errors that occurred during tracking.

3. Related Works

The user interaction workflows within related works fol-
low a similar multi-step procedure. The first step relates to
setting up the tracking algorithm (also called initializing or
tuning), followed by applying the tracker. In some cases, the
system also includes a correction step (sometimes referred
to as validation). ABCTracker also follows this multi-step
procedure which we describe as the Marking, Tracking, and

Correction phases.

When discussing various approaches taken to the setup
step, it is important to note that existing tracking systems
rely heavily on foreground images (also referred to as fore-
ground blobs) (10; 12; 14; 9; 11; 1; 8). Because of this,
several of the parameters a user tunes during this step relate
to that fact. In many cases, when a tracking system com-
pletely fails or produces low accuracy results, it is due to the
quality of foreground estimation or violated assumptions on
its properties. For example, IdTracker (10) and IdTracker.ai
(12) both employ fingerprinting techniques to distinguish
targets from one another; this imposes particular assump-
tions on the foreground needed for gathering training exam-
ples. Additionally, nearly every system available performs
inference on the foreground for gathering object detections.
Thus, the tools provided for tuning foreground estimation
are crucial and, roughly speaking, fall into two categories.
The first category corresponds to predefined image process-
ing pipelines (such as (10)). These approaches present sev-
eral parameters of foreground estimation as well as one or
more sample images so the user can try various parameter
settings. The second category of systems provides further
flexibility by allowing the user to build custom image pro-
cessing pipelines (such as (6; 14)). The primary disadvan-
tage in both categories is technical knowledge requirements.
Such requirements include experience using image process-
ing techniques (e.g., element size for binary erosion) as well
as considerations on how trade-offs in qualitative properties
of the foreground relate to the algorithm’s ability to track
(e.g., over-segmentation vs. under-segmentation). ABC-
Tracker proposes a different approach that not only tunes
the parameters of foreground estimation but all necessary
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Figure 2. An illustration comparing typical parameter tuning procedures against the proposed approach. Existing tracking systems request
that parameter values be defined directly (e.g. (12; 10; 11; 8; 1)), and in some cases require the user to define portions of the tracking
pipeline as well (6; 14). An advantage of these approaches is that parameters and their values can potentially be applied to multiple
recordings. The drawbacks concerns technical knowledge requirements (e.g. assumes knowledge of relationships between foreground
properties and the algorithms ability to track) and encourages a time-consuming procedure of trial and error. The proposed system uses an
intuitive object annotation approach to tune all tracking and correction related parameters. This allows the system to optimize the image
processing pipeline automatically (particle swarm optimization, section-5.1) in addition to providing other useful facts about the recorded
targets (e.g. size distribution). In this example, roughly twice as much time was spent tuning parameters in UMATracker (14) (middle,
uses a graphical programming approach to define both an image processing pipeline along with the pipeline’s parameter values) than was
spent marking objects in ABCTracker. Note that ABCTracker was able to produce more complete foreground blobs with less noise.

parameters used for tracking and error correction (section
4).

Several works use sequential tracking methods (i.e., may
also be referred to as online or real-time) which employs
an inference procedure that sequentially processes video
frames one at a time (14; 11; 8). A notable advantage to
these approaches is their innate appropriateness for real-
time application. The drawback of these approaches is that
their observation window is limited. For example, occlu-
sions can be challenging to manage because no informa-
tion (i.e., observations/detections) is available relating to the
other end of the occlusion. Batch approaches (also referred
to as offline, or Global data-association based tracking ap-
proaches) express tracking as an optimization problem over
larger temporal windows of observations than typically con-
sidered in sequential approaches. Two systems that have
successfully employed batch tracking approaches are Id-
Tracker (10) and IdTracker.ai (12). Here, they extract dis-
criminative features from the targets which serve as finger-
prints for performing data association. Both works require
a sufficient number of training examples to work, meaning
that several assumptions are placed on the recording con-
ditions, cleanliness of the background, and the density of
targets in the scene. ABCTracker formulates tracking in a
batch manner but uses predictions from multiple sequen-
tial trackers to conservatively perform data association (see
section-5).

Some systems implement correction features to handle
errors produced by the tracker (14; 8; 12; 11; 9; 1). UMA-
Tracker (14) incorporates correction abilities during track-
ing by allowing the user to monitor and pause the tracking
algorithm. While paused, the user can either adjust target

positions or swap id assignments and then resume tracking.
IdTracker (12) proposes a crossing-validation step that asks
the user to verify the presented id assignment during an ani-
mal crossing (i.e., an occlusion) – no other correction oper-
ations are available (e.g., adjustments). A few systems exist
that offer more complete correction operation sets (8; 1), but
lack intuitive user interface designs. ABCTracker includes
two integrated modes of performing corrections: a compre-
hensive correction mode we refer to as manual mode, and
an assisted error correction mode called guided mode (see
section-6).

4. Marking phase

Multi-object tracking algorithms are formulated as
pipelines of subroutines (e.g., preprocessing images, detec-
tion, low-level association, filtering). Each subroutine has a
set of parameters that impact not only its performance but
the performance of any subroutines that follow. This makes
the initial phase within tracking systems - parameter tun-
ing (also referred to as setup or preprocessing) - crucial for
the overall success of the system. Unfortunately, in previ-
ous tracking systems, parameter tuning is also very demand-
ing on users in terms of technical know-how, sometimes so
much as to have the user assemble both the tracking pipeline
and its parameter values directly (e.g., ForegroundThresh-
old = 0.9). An ideal system should allow someone with no
technical knowledge of how the tracking algorithm works
to tune all subroutine parameters effectively.

Our tracking system requires only the input video and
user annotations on select video frames (which we will re-
fer to as user-marked-frames); no tracking parameters need
to be defined directly by the user. A user-mark (figure 1 and
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Figure 3. An overview diagram of the default algorithm used
during the tracking phase. Expected inputs to the algorithm
are the user-marked frames gathered during the marking phase.
First, tracking parameters are determined based on the user-marks.
Next, foreground classification is performed (section-5.1) and the
results are used both as region proposals during detection (section-
5.2) and to construct occlusion tunnels (4) (section-5.3). Tracklet
building accepts the detection responses and occlusion tunnels, us-
ing them to build an initial set of high-confidence trajectory frag-
ments (i.e., tracklets) (section-5.3). Once the initial tracklet set
is determined, a detection confidence classifier is trained and ap-
plied. The system then attempts to filter false positive tracks based
on detection confidence. Finally, tracklet matching is iteratively
performed using prediction agreements between independent se-
quential trackers (section-5.4). For videos of sufficient length,
chunking is performed automatically such that the algorithm is ap-
plied to each chunk individually and stitched together afterwards
(section-5.5).

figure-2) is a region of the image corresponding to a target
of interest. Three-clicks, together with brush size, define
the extent of a target. A smooth spline is fit to the three
points, and the resulting thickness of the spline is equal
to the brush size. The system requests user-marks (i.e.,
three-point splines with a defined thickness) for a number
of video frames determined as follows. The first and last
frames of the video are always requested. Knowing the lo-
cation of each target in the initial and final video frames is
beneficial to both the method used during tracklet matching
(section-5.4) as well as guided correction mode (section-
6.2). If the video is longer than 5000 frames, then chunking
will be performed (see section-5.5), and the system requests
user-marks for the overlapping frame between neighboring
chunks. If the previous two conditions are met, but less
than 30 user-marks have been gathered, more frames are
requested for marking. The additional frames are selected
uniformly throughout the video until 30 marks have been
gathered.

5. Tracking phase
5.1. Foreground Estimation

Currently, ABCTracker assumes input videos are cap-
tured using a static camera setup (i.e., no camera motion).
The foreground pixels are initially estimated with back-
ground subtraction using the user-marked-frames to deter-
mine the proper difference threshold. Because the initial
foreground estimation can contain varying levels of noise
and produce overly connected and fragmented foreground

blobs, we use particle swarm optimization on a set of mor-
phological operations for foreground refinement. We use
four parameters for foreground refinement. The first pa-
rameter defines an initial threshold for the minimum area
foreground blobs should have. The second parameter spec-
ifies the number of times to perform the majority operation.
The final two parameters concern the size of the structured
element for performing morphological closing, and again
the minimum area threshold on the foreground blobs result-
ing from the previous operations. We formulate the loss
function of the particle swarm as a weighted average of the
number of correct, over-segmented, under-segmented, and
incorrect foreground pixels. All factors within the particle
swarm loss are calculated using user-marked-frames.

5.2. Detection

The detection module produces location, size, and ori-
entation information of detection responses in each frame.
First, the system trains an SVM classifier that operates on
HOG features (2) extracted from blob proposals. User-
marks determine positive and negative examples for train-
ing the classifier. Using the foreground blobs as region pro-
posals reduces the frequency of false-positive detections.
After foreground estimation and refinement are applied to
a given frame (section-5), foreground blobs that meet the
minimum and maximum thresholds for both area and ratio
(determined using user-marked-frames) are given to the pre-
viously trained classifier. Proposals receiving positive clas-
sifications become detections. The set of detections across
all frames of the video, represented as D, proceed to track-
let building. Note that, when the average size of the tar-
gets within the scene is small (detection area < 50 pixels),
HOG features become unsuitable for classifying blob pro-
posals. Therefore, when the average target size is less than
50 square pixels, the classifier is not used, and blob pro-
posals that pass all area/ratio thresholds become detection
responses.

5.3. Tracklet building

To assemble low-level tracklets (i.e., confident trajectory
segments constructed from frame detections), we develop
an approach that can accurately generate long detection as-
sociations without relying on motion/appearance features
or learning function parameters for scoring associations.
We accomplish this by performing inference on the fore-
ground images, specifically foreground ”tunnels” that span
spatially and temporally over the video sequence. We con-
struct the foreground tunnels according to Fasciano et al.
(4), which results in a directed acyclic graph F = (V,E)
that represents overlapping foreground blobs through time.

Expected inputs to tracklet building are the set of de-
tections D and the foreground tunnels F = (V,E). We
first determine regions of the foreground tunnels F that nei-
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ther merge nor split. For every vi ∈ V (i.e., foreground
blob) we calculate its in-degree, deg−(vi) (number of in-
bound edges), and out-degree, deg+(vi) (number of out-
bound edges). Sequences of nodes having deg−(vi) = 1
and deg+(vi) = 1 partition the graph F into “lanes” which
represent overlapping foreground blobs across time that nei-
ther merge nor split. We then map detections in D to fore-
ground blobs in vi ∈ V by determining if the centroid of
the detection du ∈ D falls within the boundaries of blob
vi ∈ V . We convert lanes into tracklets when a major-
ity of their blobs have a detection mapped. Blobs within a
lane having no mapped detection but are part of a majority
mapped lane are assigned interpolated values. We discard
all detections present in non-majority lanes. The output of
tracklet building is the initial set of tracklets T0.

The final subroutine before tracklet matching (section-
5.4) concerns learning a more robust measure of detection
confidence. The SVM classifier described in section-5.2 is
very limited in terms of training data; thus, its prediction
confidence is unreliable. We learn a Random Forest classi-
fier using training examples from the initial tracklet set T0.
Negative examples are gathered by taking detections in T0

and adding random noise in position and orientation. This
confidence measure is used during tracklet matching as well
as during the correction step, but initially, it is used to fil-
ter false positive tracks within T0. We remove every track
ti ∈ T0 that has average confidence less than 0.5.

5.4. Tracklet Matching

The goal of tracklet matching is to establish associa-
tions between tracklets within the initial set T0. Instead
of attempting to estimate tracklet affinities with parametric
heuristics or association models learned offline with train-
ing data or online with restrictive assumptions imposed, we
rely on prediction agreements between independent sequen-
tial trackers. The underlying assumption is that accurate
tracking should be independent of the temporal direction
and that consistencies between predictions gathered in op-
posing directions signify trustworthy associations. Figure-
4 illustrates the general concept behind the matching algo-
rithm. We first describe how the sequential tracker operates
and what it means to run the tracker in both the forward
and backward directions. Afterward, we outline how we
use prediction agreements between the forward/backward
trackers to perform matching.

Forward/backward sequential trackers We describe
how we apply the sequential tracker in the forward direc-
tion; except for temporal direction, the approach is identi-
cal in the backward direction. Inputs are the current set of
tracklets Tn = {τi} and the set of foreground pixels in each
frame {Ft}. The sequential tracker seeks to find a global
configuration for all targets in the scene that maximizes both

appearance similarity (i.e., image patch comparisons) and
foreground coverage. For a particular frame ft, estimating
the global configuration of the targets in that frame means:
estimating the location of tracklets which terminated before
frame ft, and factoring in tracklets having known locations
within frame ft. To factor in the tracklets having known
locations in frame ft, we remove foreground pixels from
Ft corresponding to those locations. Specifically, for ev-
ery tracklet within frame ft, we determine pixels within the
tracklet’s oriented bounding box location and subtract these
pixels from the foreground image Ft, producing F ?

t . For
each frame of the video ft, the general procedure the tracker
follows is: 1.) it determines tracklets which terminate in
frame ft−1 and adds them to the list of targets to track Ψ,
2.) it calculates F ?

t by removing foreground pixels from Ft

corresponding to known target locations, 3.) it optimizes
the configuration of targets being tracked Ψ, 4.) it records
if any tracks within Ψ ”landed” on a tracklet which begins
in frame ft (i.e., records targets in Ψ that are sufficiently
close to the starting frame position of a tracklet τi ∈ Tn –
represents a prediction), and 5.) it removes any targets that
”landed” from the list of targets to track Ψ. We determine
the distance threshold for checking if a track landed based
on the user-marks (section-4).

Because tracks can fail to land (e.g., drifted to back-
ground), the set of targets to track Ψ could grow very large
and result in unnecessary computation. Using the user-
marked frames, we determine an upper bound on the num-
ber of targets in the scene Ω. After processing each frame
during sequential tracking, we remove q targets from Ψ.
Specifically:

q = |inFrm(Tn, ft)|+ |Ψ| − (Ω + 2) (1)

where inFrm(Tn, ft) returns the set of tracklets occurring
in frame ft. When q > 0, we determine q members within
Ψ to terminate by calculating a cumulative version of the
target-level fitness for each target (equation-2). In this way,
targets who remain in Ψ longer are more likely to be part of
the q members terminated.

Optimization We now describe how the global configu-
ration of targets to track is optimized in each frame using
a genetic algorithm approach. Here, each member in the
genetic algorithm’s population, Ψ̂j ∈ Ψ̂n, represents a po-
tential configuration of the targets to track, Ψ̂j = {ψ̂i}.
The initial population Ψ̂0 is constructed by adding random
displacement (X ∼ N (0, σ2)) to target locations in the
previous frame. Motion statistics used during population
initialization and reproduction are calculated from the ini-
tial set of tracklets, T0. To estimate the optimal configura-
tion of target positions, we use two fitness terms: a target-
level fitness FitT (ψ̂i) and a global configuration-level fit-
ness FitG(Ψ̂j). The target-level fitness calculates the ap-
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Tracklet Matching Results

Forward Predictions

Backwards Predictions

Prediction Agreement
(Graph Cycles)

Initial Tracklets

-  Detection Response
-  Association (Tracklet Building)

    Legend:

-  Association (Tracklet Matching) (Iterative)

Detection & Tracklet Building

Figure 4. Overview of the tracklet matching algorithm (section-5.4) given the initial set of tracklets from tracklet building (section-5.3).
Sequential trackers, initiated from tracklet end points, are run both forward (blue arrows) and backward (red arrows). A cycle in the
association graph – representing an agreement between forward and backward tracker predictions in a single iteration (illustrated as purple
arrows) – are iteratively determined to conservatively match tracklets.

pearance similarity at a predicted location for a single target
ψ̂i ∈ Ψ̂j :

FitT (ψ̂i) = F̄∆(∆(ψ̂i)) (2)

Where F̄∆ is a complementary cumulative distribution
function and ∆(ψ̂i) is the absolute difference between the
oriented color image patch at position estimate ψ̂i and the
target’s appearance template. We determine target appear-
ance templates based on detection confidence (see section-
5.3). When using multiple templates, we select the template
with the minimum absolute difference. The system calcu-
lates the sample mean and standard deviation of F̄∆ at the
start of each tracklet matching iteration. Specifically, for
every tracklet τi ∈ Tn we compute ∆ at randomly selected
locations within τi. Global configuration-level fitness con-
cerns how well a predicted configuration explains the un-
claimed foreground within F ?

t :

FitG(Ψ̂j) = Cov(Ψ̂j , F
?
t ) (3)

where Cov(Ψ̂j , F
?
t ) is the number of foreground pixels

in F ?
t covered by predicted locations ψ̂i ∈ Ψ̂j . Fitness

scoring and reproduction is performed over ω cycles. The
output configuration is the weighted mean of all members
within the final population, Ψ̂ω . Specifically, for each tar-
get to track ψi, the final state estimate is:∑

Ψj∈Ψω

(1−Wij)ψ̂ij (4)

whereWij represents the normalized target-level fitness
values (equation-2).

Reproduction We first select two parents by roulette
wheel selection based on global configuration-level fitness
scores (equation-3). Given two parents, a single child is

produced by randomly performing either crossover or mu-
tation. In the case of crossover, we iterate over each tar-
get being tracked and assign the highest scoring predicted
location (equation-2) among the two parents to the child.
For mutation, we first select the parent with the highest
configuration-level fitness (equation-3) and add random dis-
placement on position and orientation to all targets being
tracked. As previously noted, displacement parameters are
calculated from the initial set of tracklets.

Iterative Tracklet Matching Each iteration of matching
n uses the previous tracklet set Tn−1 to produce a further as-
sociated tracklet set Tn. During each iteration, we construct
a directed association graph G = (V,E). Each tracklet is
represented by two vertices corresponding to the beginning
and end of the tracklet – no edge is defined between the two
endpoints. Directed edges inG capture predictions from the
sequential trackers (i.e., targets to track which ”landed”).
We first detect prediction agreements by finding graph cy-
cles with a length of 2. We then filter all detected cycles
which have a vertex with more than one inbound edge. A
vertex with more than one inbound edge would mean that
multiple predictions ”landed” on that tracklets’ endpoint,
and thus would represent an unreliable association. Finally,
we associate the tracklet endpoints corresponding to the fil-
tered cycles detected in G. After each matching iteration,
appearance models of connected tracklets are updated to re-
flect the most representative appearance template. In prac-
tice, matching continues for three iterations or until no con-
nections are made in a single iteration.

5.5. Automatic video chunking

As a step towards more scalable application, the sys-
tem employs automatic video chunking and stitching for
videos of sufficient length. Aside from additional frames
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requested during the marking phase, the process of video
chunking and stitching is hidden from the user. For videos
having more than 7000 frames, the system determines frame
boundaries for each chunk according to two system param-
eters: the ideal number of frames per chunk λ and the min-
imum number of frames per chunk λmin. Furthermore, we
define the boundaries for each chunk such that temporally
neighboring chunks have precisely one overlapping frame
in common. Currently, we set the values for λ and λmin

to be 5000 and 300 respectfully. These values represent the
typical sequence length used during algorithm development
and also result in an acceptable amount of memory use. We
add the overlapping frames between neighboring chunks to
the list of user-mark frames requested during the marking
phase. Doing so provides the system with location informa-
tion for all targets within these frames.

Once the tracking phase has completed all of the defined
tracking modules, the final routine is to aggregate all chunk
results into a single tracklet state. The system performs
nearest neighbor matching to stitches the tracklets across all
chunks. Association errors resulting from nearest neighbor
stitching are practically impossible since target locations are
known within the overlapping frames.

6. Correction phase

Here we describe the correction phase of a tracking pro-
cess where the user can locate and address tracking errors.
ABCTracker’s correction system includes two modes: man-
ual mode and guided mode. Manual mode offers multiple
ways of visualizing all tracks within the video and provides
a complete set of track modification operations for obtain-
ing high accuracy results. Guided mode provides a directed
work-flow by automatically determining possible errors in
the results and presenting them to the user as easy to answer
questions (which we will refer to as reviews). The two cor-
rection modes have been designed to be quick and easy to
switch between at any time, promoting flexible work-flows
suitable for novice as well as advanced users.

6.1. Manual correction mode

One of the primary design goals for manual correction
mode is providing a fundamental set of correction opera-
tions. As illustrated in figure-6, there exist a large number
of ways in which target objects can behave in addition to nu-
merous approaches one can take towards assembling, con-
fining, and recording them. As such, the correction phase
needs to be able to handle cases where the tracker produces
poor results while also offering features to accelerate the
correction process when the tracker performs reasonably.
We include five correction operations within manual mode
to handle any tracking error (Table-7): Add, Remove, Join,
Break, and Adjust.

One noteworthy implementation detail is that each oper-
ation within manual mode has a predictable behavior. For
example, the break operation slices the selected track pre-
cisely at the current frame and modified positions during an
adjustment operation use linear interpolation. Previous pro-
totypes of the manual correction mode attempted to perform
inference on operation requests (e.g., break operation would
attempt to find nearby associations with high uncertainty).
When using these versions of the system, users expressed
frustration towards not having manual operations that were
predictable in their outcome.

The system includes several features reported as being
useful by users. For example, target-following zoom con-
trols, playback speed controls, autosave, an undo opera-
tion available in both correction modes, keyboard short-
cuts, video scrubbing with the mouse wheel, and context-
aware help dialogs. Moreover, two visualization tools are
available to aid in finding tracking errors favored by the al-
gorithm. When the user selects a track, an interactive vi-
sualization appears above the playback bar (item d within
figure-8) depicting the temporal extent of the selected track.
Similarly, the temporal extent of all tracks within the video
can be interacted with (item c within figure-8), allowing the
user to jump to potential false positive tracks and identify
false negative associations quickly.

6.2. Guided correction mode

Guided-mode aims at providing an intuitive and effec-
tive means of addressing two common error types within
section-7: FN associations, and ID-integrity errors. The
two error types are related – one being a failure to asso-
ciate tracklets and the other an incorrectly made associa-
tion – and represent a trade-off made while handling uncer-
tainty. While the tracking algorithm (section-5.4) attempts
to establish as many correct associations as possible, the
key principle in its design is to avoid ID integrity errors and
instead favor FN associations. This decision is due to the
innate dependency between tracking and error correction.
More specifically, tracking should approach the trade-off
with the following realities considered. First, FN associa-
tions are easier to detect (manually as well as automatically)
and more intuitive for users to correct than ID-integrity er-
rors. Second, correcting situations that involve an ID in-
tegrity error are often multi-step processes (i.e., just identi-
fying an incorrect association will result in an FN associa-
tion error unless the user provides additional information).
Lastly, the act of correcting FN associations has the poten-
tial to identify ID integrity errors (see figure-5).

6.2.1 Work-flow of guided reviews

A guided-mode review represents a possible tracking error
identified in the results. The process a user follows for an-
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Follow this target
(Click to start)

Follow this target
(Click to start)

Applying review #3
results in tracklet Green
joining with Yellow. 

#1

#2

Follow this target
(Click to start)

Target’s center and
orientation are defined
through click-n-drag
interactions when playback
pauses (i.e., key-frames).

Currently, there is an ID-
integrity issue within 
tracklet Green which 
occurred during tracklet
matching (dashed line). 

Applying Review #1 
resulted in: an ID switch
broken (Green), removal
of an engulfed tracklet
(Purple), and associating
Cyan with the latter part
of broken tracklet (Green). 

#3

Initial State

Final State

Review #1 concerns the
Cyan track - white arrows
represent annotations and
the red box is the starting
frame of the review.

Applying review #2
causes an extension to
Green but no association.
 
Because the end of Green 
is not resolved, it will be 
added back to the review
queue for additional 
annotations 
(which is review #3 here).  

Review #2 concerns the
beginning portion of the 
recently broken Green.

Figure 5. An illustration of guided mode reviews and the resulting state of the tracklets once inference is performed on review answers.
Here, five rows are shown: the first and last rows depict the initial and final state of the tracklets, the three middle rows (numbered #1–#3)
portray reviews and their answers. Each colored line within the tracking-state drawings represents a tracklet (e.g., horizontal lines colored
cyan, green, yellow, and purple). Two tracklets (i.e., lines) that are vertically aligned with one another represent a correct associations. The
sequence of images within each of the review blocks numbered #1–#3 shows the key-frames presented to the user (i.e. playback pause
points) and the how the user specifies the target’s position and orientation (red arrows). The initial state of the tracklets contains several
FN associations (i.e. gaps between vertically aligned lines) and one ID-integrity issue (i.e., FP association made during tracklet matching
– represented by the dashed green line). The ID-integrity issue is corrected while addressing the premature termination on the cyan track
(Review #1). Review #1 also shows an example of removing an engulfed track (purple track/line). Reviews #2 and #3 handle the remaining
FN association and demonstrate how additional annotations are sometimes required to establish an association.

swering a review is identical for all reviews, regardless of
the underlying error the user is addressing (illustrated in
figure-5). First, the user is presented with a target to follow

and prompted to begin video playback. From there, play-
back will periodically pause at predefined frames, which we
will refer to as keyframes, and ask the user to annotate the
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a. b.

c. d.

e. f.

g. h.

Figure 6. Examples of tracking results gathered using ABCTracker. (a-c) Ants under various lighting and background conditions, (d) bees
which exhibit large pose variations in a scene with difficult background textures, (e) termites recorded with back-lighting (f) termites that
shift dirt slowly over time as they move, (g) cockroaches, and (h) zebrafish.
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Figure 7. List of tracking failures, their descriptions, Operation that corrects them in manual mode, and whether errors of that type are
handled in guided correction mode.

Tracking Error Description of Tracking Error Addressed within
Guided Mode

Addressed by
Manual Op.

FN Association Tracking fails to associate multiple tracks covering
a single object.

Yes Join

ID Switches An incorrect association that causes a track to
switch from one target to another.

Yes Break

False Tracks (FP) A track never covers an object in the video, or does
but less appropriately than other track.

Yes Remove

Lost track A track covering an object ends prematurely and
there is no correct association that would extent it.

Yes, if extension
is forward in time

Adjust

Localization errors A track does not accurately represent the state of
the target it covers (location, orientation, or size)

Some cases Adjust

Missed Objects (FN) An object is never covered by a track at any point
in the video.

No Add

10+

d

a

e

c

b

Figure 8. An overview of the correction features for a tracking process in manual correction mode. The right click menu (e) shows the
available operations for the track selected. Several features are included to aid with performing corrections, for example: (d) above the
video playback bar sits a linear representation of the selected track (green colored – matches the color of the selected track) which depicts
the temporal extent of the track and (c) an interactive tab showing the temporal extent of all tracks in the video. Switching between guided
and manual correction modes can be done at any time with the toggle button (b). When users encounter a feature for the first time, tutorial
dialogs are shown automatically to explain how and when to use that feature. All tutorials can be viewed again by clicking (a).
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target’s location and orientation with a click-n-drag interac-
tion. This process continues until the review has finished,
at which point the review’s answer is sent to the server
for inference while the next review is presented (details in
section-6.3).

6.2.2 Review creation and ordering

Three properties of a review dictate the requested interac-
tion with the user: the ID of the tracklet being reviewed, the
starting frame of the review (i.e., step showing what target
to follow), and the key-frames selected for annotation. Be-
cause many review situations relate to occlusions or large
pose variations, it may be difficult to discern what target to
follow. Because of this, we select the starting frame of the
review based on detection confidence (described in section-
5.3) and allow the starting frame to be within 45 frames of
the believed starting point of the error.

As stated previously, all reviews within guided mode ap-
pear to be similar from the user’s perspective and are ap-
plied using a common inference procedure (section-6.2.3).
We make a distinction here between review types to better
describe the creation and ordering of reviews.

Fragment reviews primarily address FN associations. FN
associations can be detected with perfect recall by searching
for tracks that end before the last frame of the input video.
The precision of detecting these failures using this approach
is affected by the frequency of false-positive tracks and tar-
gets exiting the scene. We note that these two cases can be
handled during guided reviews with the options to remove
the track or state that the target is no longer in the scene.
The system prioritizes fragment reviews in ascending order
based on the starting frame of the review.

For connection reviews, which determine possible ID as-
signment issues incurred during tracking, a more detailed
process is required. Individually reviewing all connec-
tions made throughout the tracking process is impractical
for nearly any tracking situation. Furthermore, the num-
ber of ID assignment errors made should be relatively small
compared to the number of associations established; for the
tracking algorithm described in section-5.4, we attempt to
justify this assumption even more so through design de-
cisions which favor FN associations over ID integrity er-
rors. Therefore, we utilize a moving threshold on priority
scores for connection reviews. A moving threshold allows
the system to request more connection reviews as ID assign-
ment issues are identified. The priority value for connec-
tion review is the average detection confidence (section-5.3)
within the connected region (i.e., between the endpoints of
the association).

6.2.3 Inference on answered reviews

The general concept behind review inference is that key-
frame annotations for select tracklets can be used to join dis-
connected tracking segments. Additionally, the same proce-
dure can check for incorrect associations by first breaking
any connections the user reviews and then relying on the
key-frame annotations to reestablish correct associations.

Let r and τi be the review and the tracklet being re-
viewed by the user. Let rstart and K = {kj} be the starting
frame of the review and the set of key-frame annotations re-
spectfully. We record every association made on a tracklet
during tracklet matching (section-5.4) within the properties
of the tracklet. Using this connections property, we deter-
mine if the temporal span of the annotation set, K, covers
any connection. If so, then the review concerns an uncer-
tain association made during matching, and we break the
connection. After breaking connections within τi covered
by K, we apply the annotations to the tracklet. The posi-
tion and orientation information for each key-frame annota-
tion is assigned to the tracklet, and the following interpola-
tion procedure fills the gaps between the key-frame annota-
tions. For each consecutive pair of key-frame annotations,
we run a single-target particle filter both forward and back-
ward. If both tracking directions ”land” on the opposite key-
frame annotation, then agreement was established (similar
to section-5.4). In this case, we assign the weighted mean
of the two trajectories as the interpolated positions. We use
linear weights, from 1 to 0, when combining the sequen-
tial tracker predictions such that more weight is given the
starting point of the trackers. If either of the trackers fails
to ”land,” then we increase the number of particle samples
used and rerun tracking. If the tracking directions do not
both ”land” after four attempts, then we resort to a fallback
and assign linear interpolation as the interpolated values for
the pair of key-frames.

In some cases, the key-frame annotations within a sin-
gle review will not provide enough information to join two
tracklets confidently, thus requiring the review to be re-
queued for additional annotations (see figure-5). So, before
determining if the reviewed tracklet should be joined with
another tracklet, we gather any previous key-frame anno-
tations that this review builds upon; let K? be the set of
previous and current key-frame annotations.

We use a sequence of four checks to determine if a re-
viewed tracklet should be joined with another. First, we
calculate the distance between key-frame annotations and
tracklets other than τi. The first threshold checks that the
average distance between tracklets and annotations are less
the θ1. Let τk be the closest distance tracklet which passes
threshold θ1. The second and third thresholds ensure that
the join operation is conservative, namely that the margin
between the second-best distance is greater than θ2 and
that the number of key-frames temporally overlapping τk
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is greater than θ3. A final check eliminates any join op-
erations that have key-frame annotation extending beyond
the tracklet to join with, τk. The values for θ1 and θ2 are
determined automatically based on the user-marks.

The last step of review inference is to identify tracklets
that are engulfed by the key-frame annotations. We define
an engulfed tracklet as a track that is covered both spatially
and temporally by the annotations, K?. We first calculate
the average distance for each tracklet falling entirely within
the temporal span of K?. Since engulfed tracks represent
redundant data and redundant data is harmful to guided cor-
rections (i.e., can cause leap-frogging review situations), we
use a relaxed maximum distance threshold of 2 ∗ θ1. We as-
sume annotations are a more valuable option to keep and
remove engulfed tracklets.

6.3. Correction phase implementation details

In terms of implementation, exchanges between the
client and server can be thought of as review-batches and
apply-batches. At the start of the correction phase, the
server supplies an initial review-batch to the client, specifi-
cally an ordered list of guided reviews. Apply-batches from
the client to the server contain one or more correction op-
erations (both manual operations and review answers are
considered correction operations, meaning a mixture of op-
eration types is possible within a single apply-batch). Each
review-batch from the server provides many reviews, al-
lowing the client to continue presenting reviews while the
server processes the previous batch. Once the server fin-
ishes processing a batch, another round of exchange occurs
– the server creates a new list of reviews, and the client
passes it’s current backlog of operations to apply.

Each review-batch constructs an entirely new list of re-
views – a quick process that results in little overhead and
aids in maintaining a consistent state of the tracks between
the client and server. Since identifying FN association er-
rors can also identify ID assignment errors at inference
time, the priority values for all fragment reviews are auto-
matically shifted to be above the highest priority connection
review.

7. Results

Owing to our collaboration with biologists, ABCTracker
has been well tested both in terms of system stability and
robustness. The current version of the system has been used
to track more than 350 video sequences, constituting over
1.5 million video frames tracked.

We have used ABCTracker to collect ground truth tra-
jectories (position and orientation) for 40 diverse video se-
quences containing groups of insects. The average num-
ber of targets within these videos was 38 and each con-
tained roughly 5000 frames on average captured at 30-fps

– amounting to 6.8 million ground truth positions gath-
ered. Following the marking and tracking phases, ground
truth annotators were permitted to use any combination of
manual- and guided-mode. To ensure quality in the ground
truth and that inference on guided corrections behaved as
expected, annotators were asked to perform a final check
within manual-mode. The final check consisted of follow-
ing each target individually throughout the video, correcting
any errors detected, and recording the track as complete us-
ing the system’s “Mark Complete” feature. Manual correc-
tion mode proved to be a useful tool for gathering ground
truth tracking data. From our informal observations, new
users to the system – not just the annotators previously men-
tioned – tend to make higher proportions of their corrections
within guided mode than more experienced users do. As an
individual becomes familiar with correcting tracking errors
and specific features in manual mode (e.g., figure 8 – c and
d), we see workflows develop that involve more switching
between the two modes. Although ABCTracker does not
assume that objects are confined to the scene, one limita-
tion within the current version of manual correction mode
is that objects which exit and later return to the scene must
have different ID values assigned. We want to address this
in future versions.

7.1. Evaluation metrics

We follow the evaluation procedure outlined in (5; 7)
to measure the tracking performance of the system. The
first five of the following metrics evaluate the system’s abil-
ity to detect objects in the scene and filter false-positive
responses (i.e., frame-based metrics), while the remaining
three metrics assess how well the system associates detec-
tion responses:

Ground Truth Coverage (GTCov. ↑) Tracking recall -
the percentage of GT positions covered by a tracklet.

Mostly Tracked (MT ↑) The percentage of GT trajecto-
ries successfully tracked for more than 80%.

Partially Tracked (PT) The percentage of GT trajectories
successfully tracked between 20% and 80%.

Mostly Lost (ML ↓) The percentage of GT trajectories
which are tracked for less than 20%.

False alarms per Frame (FAF ↓) The number of false de-
tection responses divided by the number of frames

Identity Switches (IDS ↓) The number of times a tracklet
changes its matched GT identity (5).

ID Integrity Errors (IdInteg. ↓) The number of times a
tracklet changes from one matched GT identity, idj ,
to another, idk, and does not return to the former GT
identity idj within N frames. Here, we define N to be
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Figure 9. Performance on the ”OpenDivide 1” dataset. The Targets x Frames column relates how long it would take to follow each target
individually throughout the video, and in several ways, represents the quantity of tracking data to be gathered.

0

1

2

3

In
te

gr
ity

 E
rro

rs

Errors corrected using guided correction mode

0 20 40 60 80 100 120 140 160
Number of Guided Mode Reviews

0

10

20

30

40

50

60

70

80

90

100

Fr
ag

m
en

t E
rro

rs

FN Assoc.
Integrity Errors

0 20 40 60 80 100 120 140 160

0.7
0.75

0.8
0.85

0.9
0.95

1

GT
 C

ov
er

ag
e 

(%
)

0

0.5

1

Fa
fGT Coverage

FalseAlarmFreq

Number of 
targets

Enter
/Exit

Targets x Frames
(amount time)

ChallangesVideo length

(3m 29s)

5,000 frms
40

164,873 frms 

(1h 31m 36s)
Yes

Clutter.
Long occlusions.
Ants on rocks 

become hard to
detect.  

  GT Coverage
  Faf

0

3

6

9

In
te

gr
ity

 E
rro

rs

Errors corrected using guided correction mode

0 20 40 60 80 100 120 140 160

Number of Guided Mode Reviews

0

10

20

30

40

50

60

70

80

90

100

FN
 A

ss
oc

ia
tio

n 
Er

ro
rs

FN Assoc.
Integrity Errors

0 20 40 60 80 100 120 140 160

0.7
0.75

0.8
0.85

0.9
0.95

1

GT
 C

ov
er

ag
e 

(%
)

0

1

2

Fa
fGT Coverage

FalseAlarmFreq

GT Cov. FAF Avg Pos. Error FN Assoc. ID Integ. ID Sw. MT PT ML
Tracklet Building Output 0.628 0.32 2.99 1355 0 0 19 15 6
Tracklet Matching Output 0.736 1.11 3.17 114 0 0 23 11 6
Guided Corrections Output 0.946 0.51 6.36 0 0 0 37 1 2

Figure 10. Performance on the ”PinkArena 1” dataset. The Targets x Frames column relates how long it would take to follow each target
individually throughout the video, and in several ways, represents the quantity of tracking data to be gathered.
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30 frames, which is roughly the average frames-per-
second, thus one second, in our datasets.

False Neg. Associations (FN Assoc. ↓) The number of
times a correct tracklet association was not established
(i.e., No. of false negative tracklet associations).

The ID integrity error metric (IdInteg) aims at capturing
significant ID assignment issues and can be thought of as a
relaxed variant of the ID switch metric described in (5).

7.2. Evaluation of tracking and guided correction
mode

We evaluate the three major inference performing com-
ponents within the system: tracklet building (section-5.3),
tracklet matching (section-5.4), and guided correction mode
(section-6.2). We use two 5000 frame video recordings con-
taining multiple ants for evaluation, each of which have
a few distinct challenges (figures-9 and 10 show sample
frames).

The results presented in the bottom tables of figure-9 and
10 show that tracklet building is successfully able to con-
struct a conservative set of initial tracklets. In both cases,
detections covering more than 50% of the available ground
truth were assembled into the initial tracklet sets with no ID
assignment issues. Additionally, the average position error
(reported in pixels) and false alarm frequency after tracklet
building is low and tends to increase as the system performs
further stages of inference. This increased error in estimated
position is because detection and tracklet building are de-
signed to filter responses corresponding to occlusions and,
in general, localization is easier outside of occlusions.

Figures-9 and 10 also show that tracklet matching
can conservatively establish associations among the initial
tracklet set. More than 90% of the possible associations
were successfully established (96% for ”OpenDivide 1”
and 91% for ”PinkArena 1”). Between the two videos, a
single ID-integrity issue resulted during tracklet matching.

We demonstrate guided correction mode’s ability to de-
tect and correct tracking errors through simulated user input
on real video sequences that have ground truth. The simu-
lation was designed to mimic what a user can see and do
during a guided correction review. Some noteworthy imple-
mentation decisions include:

1. The annotations are supplied just as they would be for
a real user – click-n-drag coordinates – which are de-
termined by finding the closest ground truth target to
the track presented.

2. The simulation can only use portions of the ground
truth that the review (i.e. video playback) has shown

3. The simulation is not aware of any other tracks than
the one presented

4. The simulation can use other options that are available
within a review just as a typical user can (e.g. target
has exited the scene)

We reevaluate the tracking performance after each review
answer is applied. The results of simulated guided correc-
tions are presented in figures-9 and 10. All FN associations,
as well as the single Id-Integrity error, were identified and
corrected. The two targets reported as mostly lost after an-
swering all guided reviews in ”PinkArena 1” were targets
that only appeared in the scene for a brief portion of the
video and had no tracking. Guided-mode simulations were
not capable of adding new tracks, thus was not able to ad-
dress those errors.

We compare guided corrections with the traditional ap-
proach for gathering trajectory data where annotations are
defined at set intervals for every object. Specifically, an in-
dividual selects a target to follow, watches the video, and
annotates the targets position every set number of frames.
The process is repeated for every target in the video. This
annotation procedure has been used in video annotation
tools such as VATIC (13). Figure-13 presents the compar-
ison results. The traditional approach of manual annota-
tion achieves similar ground truth coverage as answering
all guided corrections when the key-frame step size equals
30 but requires 434% (1.78 hours) more playback time and
546% (6,817) more annotations. Figure-13 also reports an
overall estimated time which uses the following assump-
tions and parameters. First, we assume that playback speed
has not been altered and that annotations in the manual ap-
proach are supplied in the same way reviews are in guided
correction mode (i.e., click-n-drag). We also assume that
the average time to make a click-n-drag annotation is 1.5
seconds, and starting a new object using the traditional ap-
proach as well as starting the next review in the proposed
approach takes 2 seconds. Please note that the time pa-
rameters for annotations and changing reviews/targets are
approximations that may underestimate the total amount of
time. Still, since both methods use identical parameters for
estimating time, we believe they are representative of the
relative difference between the two approaches.

8. Conclusion and Future Work

In this work, we proposed a multi-object tracking sys-
tem that is very accessible, adaptable, and capable of ob-
taining accurate tracking data. For adapting the tracking al-
gorithm to new videos, we have proposed an alternative ap-
proach that dramatically reduces the technical demand on
users compared to prior works. We have included several
examples that demonstrate how the initial marking phase
successfully provides an intuitive means for tuning all track-
ing and correction related parameters. Furthermore, the
tracking examples provided show that the system can be ap-
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Figure 11. (a) Manual annotation, simulated using ground truth Annotations are specified every StepSz frames with linear interpolation.
(Note: this is not referring to ABCTracker’s Manual correction mode.)

StepSz #-Annotations Playback Time Est. Time GT Cov. MT PT ML IdIntg. IDS FAF
20 12,048 2h 12m 7h 16m 0.99 48 0 0 0 0 0.16
30 8,064 2h 12m 5h 36m 0.97 48 0 0 0 2 1.22
40 6,048 2h 12m 4h 46m 0.92 47 1 0 0 2 3.41
60 4,080 2h 12m 3h 56m 0.82 25 23 0 0 12 8.61
80 3,072 2h 12m 3h 31m 0.73 16 32 0 3 45 12.95

100 2,448 2h 12m 3h 16m 0.66 12 36 0 6 86 16.11
300 864 2h 12m 2h 36m 0.39 7 23 18 103 313 28.92
500 528 2h 12m 2h 28m 0.30 4 20 24 225 395 33.41

1000 288 2h 12m 2h 22m 0.21 2 14 32 202 350 37.44

Figure 12. (b) Guided mode corrections, simulated using ground truth. Performance reported after #-Reviews have been answered.

#-Reviews #-Annotations Playback Time Est.Time GT Cov. MT PT ML IdIntg. IDS FAF
30 300 6m 14m 0.88 39 9 0 1 1 0.45
60 600 12m 29m 0.92 41 7 0 1 1 0.72
90 900 18m 43m 0.95 45 3 0 1 1 0.64

120 1,197 23.9m 58m 0.97 47 1 0 0 0 0.74
131 (All) 1,247 24.7m 1h 1m 0.97 47 1 0 0 0 0.64

Figure 13. Comparison between manual annotation and ABCTracker’s guided correction mode on the dataset ”OpenDivide 1” (see figure-9
for details). Table (a) represents the traditional approach to gathering trajectory data by manually annotating each target’s position every set
interval of frames (StepSz). Table (b) shows the results of simulated guided corrections using ground truth (outlined in section-7). Within
both tables, the amount of time spent watching the video is reported in the Playback Time column, and the #-Annotations column represents
the number of times a click-n-drag annotation is supplied while playback is paused. An estimated time that includes video playback, the
number of annotations (constant time), and changing between review/targets (constant time) is reported in the Estimated Time column.
Please note that the values within the Estimated Time columns may be underestimates. Still, since both methods use common parameters
for estimating time (see 7.2), they should be representative of the relative difference between the two approaches. The traditional approach
of manual annotation achieves similar ground truth coverage as answering all guided corrections (final row of (b)) when the key-frame step
size equals 30 (cyan row in (a)) but requires 1.78 hours of additional playback time and 6,817 additional annotations.

plied to a variety of video recordings. Specifically, we show
the system can track a range of object types under diverse
recording conditions with no restrictions as to whether or
not the objects can enter and exit the scene. We have also
described that the system implements a client/server archi-
tecture and automatically chunks long video sequences –
features that attempt to bring the system closer to more scal-
able application.

Using two challenging datasets, we have verified the in-
ference performing components within the system. Con-
cerning the tracking algorithm, we have shown that the sys-
tem can conservatively establish both an initial set of track-
lets as well as associations between tracks. We show that
guided correction mode can effectively identify potential er-
rors in the tracking results and direct the user through an
intuitive procedure of correcting them. Finally, we demon-
strate that guided corrections is more efficient than tradi-
tional approaches of manually gathering trajectory data.

In summary, the current version of the system has the
following advantages:

$ Easy to get started. Once downloaded, the user can
begin right away without any complicated installations
or reading of technical manuals. The only dependency
is java, all other dependencies are pre-packaged with
the client. Furthermore, the application’s interface can
run on most machines since the system requirements
are very low.

$ An overall user-friendly interface with context aware
help dialogs that introduce system features as the user
encounters them for the first time.

$ Easy to tune the algorithm. Adapting the tracker to
new videos only requires user marks, no direct tuning
of image processing pipelines or other tracking related
parameters.

$ The tracker generalizes well for a variety of static cam-
era recordings. Thus far, it has been applied to a num-
ber of target types, both marked and unmarked, within
simple as well as more complex habitats. Addition-
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ally, the tracker makes no assumptions as to whether
objects are confined to the recording area or not.

$ Automatic chunking allows for tracking of longer
video sequences than would otherwise be possible
within the system.

$ The manual correction mode contains operations
which can address practically any tracking error and
also includes visualization tools to help identify errors.

$ The correction phase includes a guided mode that can
effectively identify common tracking mistakes and di-
rects the user through an intuitive procedure of correct-
ing them.

We acknowledge that ABCTracker is, like all existing
systems, not perfect, and that several aspects of the system
could be improved or further investigated in future works.
Disadvantages of the current system include:

! During the marking phase, some object exhibit shapes
and poses that are less suitable for the three-click user
marks. The three-click procedure works well for a va-
riety of objects (such as ants, and termite) and per-
forms adequately for some objects (e.g., zebrafish),
but lacks the flexibility to handle objects with intri-
cate poses (e.g., snakes). This shortcoming can be ad-
dressed in future releases by adding an optional “paint-
ing” mode during the marking phase.

! Currently, the marking phase is required for every
video. Some other systems may be able to reuse pa-
rameters determined in previous videos.

! The default tracking algorithm is prone to making far
more FN associations (i.e., fragmented trajectories)
when objects exhibit very rapid changes in velocity.
Additionally, the default tracking algorithm does not
benefit from longer videos as much as some algorithms
do in the related works. For example, idTracker.ai
is able to construct more discriminative fingerprints
when it has access to more training examples (12) (i.e.,
longer videos).

! The tracking phase takes a decent amount of time rel-
ative to several existing systems. Automatic chunk-
ing does provide speedups on longer videos through
parallel processing of chunks, but applying tracking
on a chunk still requires several hours. Note that the
client’s machine is not burdened during the tracking
phase because computation is performed on the server.
This means that while the server performs tracking on
a video, the user is free to create, mark, initiate track-
ing, or even perform corrections on other videos.

! A potential downside of guided correction mode con-
cerns how much information is hidden from the user.
Currently, as soon as a review has been answered the
next one is presented. Some users have reported that
they would like to know more about how their review
answer affected the tracks. As future work, we would
like to investigate ways of including additional infor-
mation during guided reviews without making guided
mode more complicated or sacrificing efficiency.

Other future works include: reducing the number of
user-marked frames during the marking phase, and improv-
ing inference during guided correction mode (e.g., better
selection of key-frames). Finally, we want to leverage the
modular structure of the tracking framework further by in-
cluding other tracking algorithms in addition to the default
tracker described in this work.
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